Skip to main content

Determinant

šŸ’” What is the Determinant?​

For a square matrix A∈RnƗnA \in \mathbb{R}^{n \times n}, the determinant det⁔(A)\det(A) is a scalar value that represents:

  • Whether the matrix is invertible:
    • det⁔(A)≠0\det(A) \neq 0 → invertible
    • det⁔(A)=0\det(A) = 0 → not invertible
  • The scaling factor of area (2D) or volume (3D) produced by the linear transformation defined by AA.
  • The orientation of space (sign of det⁔(A)\det(A)):
    • Positive → preserves orientation
    • Negative → reverses orientation
If det⁔(A)=0, the transformation collapses space into a lower dimension.\text{If } \det(A) = 0, \text{ the transformation collapses space into a lower dimension.}

🧠 Example in Python (using NumPy)​

import numpy as np

# Define a 2x2 matrix
A = np.array([[2, 3],
[1, 4]])

# Compute the determinant
det_A = np.linalg.det(A)

print(det_A) # Output: 5.0
det⁔(A)=2ā‹…4āˆ’3ā‹…1=5\det(A) = 2 \cdot 4 - 3 \cdot 1 = 5

āœ³ļø Summary​

ConceptMeaning
det⁔(A)≠0\det(A) \neq 0Matrix is invertible
det⁔(A)=0\det(A) = 0Matrix is singular
det⁔(A)\det(A)Scale factor of area/volume
Sign of det⁔(A)\det(A)Indicates orientation